Search results for "hypothalamic glucose sensing"
showing 3 items of 3 documents
Glucose and hypothalamic astrocytes: More than a fueling role?
2015
Brain plays a central role in energy homeostasis continuously integrating numerous peripheral signals such as circulating nutrients, and in particular blood glucose level, a variable that must be highly regulated. Then, the brain orchestrates adaptive responses to modulate food intake and peripheral organs activity in order to achieve the fine tuning of glycemia. More than fifty years ago, the presence of glucose-sensitive neurons was discovered in the hypothalamus, but what makes them specific and identifiable still remains disconnected from their electrophysiological signature. On the other hand, astrocytes represent the major class of macroglial cells and are now recognized to support an…
Transient Receptor Potential Canonical 3 (TRPC3) Channels Are Required for Hypothalamic Glucose Detection and Energy Homeostasis
2017
Fil: Chrétien, Chloé. University of Bourgogne Franche-Comté. Institut National de la Recherche Agronomique. Centre des Sciences du Goût et de l’Alimentation; France Fil: Fenech, Claire. University of Bourgogne Franche-Comté. Institut National de la Recherche Agronomique. Centre des Sciences du Goût et de l’Alimentation; France Fil: Liénard, Fabienne. University of Bourgogne Franche-Comté. Institut National de la Recherche Agronomique. Centre des Sciences du Goût et de l’Alimentation; France Fil: Grall, Sylvie. University of Bourgogne Franche-Comté. Institut National de la Recherche Agronomique. Centre des Sciences du Goût et de l’Alimentation; France Fil: Chevalier, Charlène. University of …
Astrocytes and hypothalamic glucose sensing: metabolic role and involvement of astroglial connexins
2012
The hypothalamus plays a pivotal role in the nervous control of glucose homeostasis. This area contains gluco-sensitive neurons. Some of them detect increases in glucose levels and regulate glucose homeostasis by stimulating insulin secretion or inhibiting food intake. It is widely accepted that astrocytes are metabolically coupled to neurons. Lactate, resulting from the metabolism of glucose by astrocytes, is transported via the monocarboxylate transporters (MCTs). In addition, gap junctions (GJ), that form networks within astrocytes, are essential to transfer glucose from the bloodstream to the active neurons. These astroglial GJ mainly consist of connexins 43 and 30 (Cxs).The aims of my …